RARE FINDS

Rare Disease Adverse Responses and Effectiveness For Innovative and Novel Drug Solutions

New Frontiers in Research Fund – 2024 Transformation Competition

The Problem

 Drugs for rare diseases are increasingly available in Canada

- Treated patients do not experience the same outcomes
 - Some patients have an extraordinary response
 - Some patients derive marginal benefits
 - Some patients experience serious harm
- Effective policy requires an understanding of what is <u>possible to achieve</u> but also <u>what can go wrong</u>. These two groups of patients define the Goal Posts of any drug policy

National Strategy

- National Strategy for Rare Diseases issued by Health Canada in March 2023
 - Improve access to new and emerging rare disease drugs
 - Establishing a robust Canadian rare disease clinical trials network
 - Help provinces and territories fund the cost rare disease drugs
 - Support early diagnoses and screening for rare disease
 - Improve collection and use of evidence to support decision-making
 - Strengthen investments in critical research and innovation in rare diseases

Project Aims

- 1. Identify extraordinary responders and non-responders to rare disease drugs and collect DNA for genomic analysis
- 2. Identify patients who suffer specific serious drug-induced harms from rare disease drugs and those who do not suffer these harms, collect DNA
- 3. Conduct genomic analyses to discover predictive biomarkers strongly associated with these these outcomes
- 4. Use cell and animal models to validate significant genomic findings to understand the underlying mechanistic basis of these outcomes
- 5. Exploit findings to improve drug effectiveness across a broader range of patients and protect patients from drug-induced harms

Feasibility – Patient Recruitment

- 10 academic health centres across Canada
- Investigators in the USA,
 Africa, Europe and the UK
- Many collaborating organizations

Canadian Organization for Rare Disorders

CF CanACT FK ÉCLAIR

When Good Drugs Cause Harm

- A previously healthy 10-year-old child presented with neuroblastoma to B.C. Children's Hospital
- Began doxorubicin chemotherapy
- Prior to last cycle of treatment, child became unwell during a routine CT scan at BC Children's Hospital
 - Intubated and rushed to ICU
 - Developed serious cardiac dysfunction, virtually no cardiac output
 - Child placed on extracorporeal membrane oxygenation (ECMO) (heart-lung machine)
 - Child received a heart transplant
 - First transplanted heart rejected
 - Child received a second heart transplant
- Child is currently cancer remission

Potential mechanism of SLC28A3

Reduced SLC28A3 expression

Less anthracycline into cell

Less ROS and toxic alcohol metabolites

Less toxicity

Validation of SLC28A3 in iPSC cardiomyocytes

SLC28A3 variant cells exhibits increased viability when exposed to doxorubicin

Identification of Drug Transporter Genomic Variants and Inhibitors That Protect Against Doxorubicin-Induced Cardiotoxicity

Tarek Magdy, Mariam Jouni, Hui-Hsuan Kuo, Carly J. Weddle, Davi Lyra-Leite, Hananeh Fonoudi, Marisol Romero-Tejeda, Mennat Gharib, Hoor Javed, Giovanni Fajardo, Colin J.D. Ross, Bruce C. Carleton, Daniel Bernstein and Paul W. Burridge Circulation. 2022 | Volume 145, Issue 4: 279–294, originally published December 7, 2021,

- Patient-derived iPSC cardiomyocytes
- SLC28A3^{rs11140490} exhibits:
 - 2.0-2.3-fold higher LD₅₀ (P<0.0001) when exposed to doxorubicin
 - 2-fold reduced doxorubicin uptake into cells
 - 3-fold reduced expression

Project Team – Areas of Research

Health Law & Policy

Game Theory

Knowledge Translation

Economics

Behaviour Change

Machine Learning

Bioinformatics

Information Systems

Genetics

Pharmacology

Clinical Practice

Rare Diseases

Biology

Novelty of Approach

- Extraordinary response: what makes this possible?
 - Convey this benefit to more patients
- Serious harm: why does this happen?
 - Predict and prevent in future treated patients
- Rare disease drug policy needs Goal Posts for policy development that will allow health policy to be derived that conveys the most benefit to patients
- Alleviate financial burdens by better understanding in whom the drugs work best (optimal to treat) or cause harm (avoid treatment)

Priority Rare Disease Drugs

Drug or		Outcome of	Estimated # (%) of Children in Canada			
Drug Class	Rare Disease	Interest	Extraordinary Responders	Non- responders	Serious Harm	
Anthracyclines	Pediatric Cancer	Heart Failure	Not applicable	Not applicable	49 (5%)	
Elexacaftor/ Tezacaftor/ Ivacaftor	Cystic Fibrosis	Extraordinary Response	200 (5%)	180 (4.5%)	Not applicable	
Rituximab	Dermatomyositis Vasculitis, SLE	Persistent Hypogammaglobulinemia	Not applicable	Not applicable	19 (20%)	
Bisphosphonates	Chronic Recurrent Multifocal Osteomyelitis	Extraordinary Response	160 (40%)	80 (20%)	Not applicable	
Agalsidase beta Migalastat	Fabry's disease	Extraordinary Response	*** (**%) 110 (22%)	120 (24%) 295 (59%)	Not applicable	

HLA-B*15:02 association with Carbamazepine-induced SJS

SJS is rare –

Annual incidence: 0.4 - 2 cases/million in Europe 2 - 8 cases/million in Asia

April 1, 2004

Chung et al (2004)

- Identified a genetic variant HLA-B*1502 associated with Stevens-Johnson syndrome
- Odds Ratio: >2,500
- Discovered initially with only 44 patients
- Allele frequency: 5-20% in South East Asian populations

Medical genetics

A marker for Stevens– Johnson syndrome

skin to particular types of medication ¹⁻³. Here we show that there is a strong association in Han Chinese between a genetic marker, the human leukocyte antigen *HLA–B*1502*, and Stevens–Johnson syndrome induced by carbamazepine, a drug commonly prescribed for the treatment of seizures. It should be possible to exploit this association in a highly reliable test to predict severe adverse reaction, as well as for investigation of the pathogenesis of Stevens–Johnson syndrome.

We studied 44 patients with carbamazepine-induced Stevens–Johnson syndrome

Genome-wide approaches to identify pharmacogenetic contributions to adverse drug reactions

ORIGINAL ARTICLE

Table 1 Examples of established genetic ADR risk factors

Drug	Adverse drug reaction		Genetic risk factor			Cases required a	
	Reaction	Prevalence	Risk allele	Frequency ^b	Effect ^c	2 × 10 ⁻⁵	10 ⁻⁷
Gefitinib ⁶	Diarrhea	0.28	ABCG2 Q141K	0.07	5	29/101	47/>150
Isoniazid ⁷ Irinotecan ^{8,9}	Hepatotoxicity Neutropenia	0.15 0.20	CYP2E1*1 & NAT2 slow Ac UGT1A1*28	0.13 ^d 0.32	28	17/36	26/58
Abacavir ¹⁰ Tranilast ¹¹	Hypersensitivity reaction	0.05 0.12	HLA-B*5701 UGT1A1*28	0.04 0.30	36 48	10/13 28/37	15/19
6-Mercaptopurine ¹²	Hyperbilirubinemia Neutropenia, other toxicity	0.12	TPMT*2,*3A, *3B,*3C	0.30 0.05 ^e	49	26/3/	42/54
Allopurinol ¹³	Severe cutaneous adverse reactions	< 0.001	HLA-B*5801	0.15	678	13/13	19/19
Carbamazepine ¹⁴	Stevens-Johnson syndrome	< 0.001	HLA-B*1502	0.04	1023	6/6	9/9

In the condition of clinical matched controls / population controls

In a variety of adverse event prevalence scenarios, only 9 to 47 cases are required to obtain 80% power and a significant P-value of $1x10^{-7}$ when performing clinical matched control comparisons.

Serious Drug-induced Harm Sample Sizes

Assumptions -

Case-to-control ratio: 1:10

Significant GWAS *P*-value: 5x10⁻⁸; Additive genetic model

Extraordinary Responders and Nonresponders Sample Sizes

Assumptions – Case-to-control ratio: 1:2

Significant GWAS *P*-value: 5x10⁻⁸; additive genetic model

Extraordinary Responders and Nonresponder Sample Sizes

Assumptions –

Case-to-control ratio: 1:2

Significant GWAS *P*-value: 5x10⁻⁸; additive genetic model

Endorsed By

- David Lee, Chief Regulatory Officer, Health Canada
- Nicole Mittman, Vice President, Canadian Agency for Drugs and Technologies in Health
- Andrew Taylor, Senior Policy Advisor, Strategic Policy Branch, Health Canada
- Michelle Boudreau, Executive Director, Strategic Policy Branch, Health Canada
- Durhane Wong-Rieger, President and CEO, Canadian Organization for Rare Disorders

Contact/Questions

Dr. Bruce Carleton, FCP, FISPE
Professor and Chair, Div of Translational Therapeutics,
Department of Pediatrics
Faculty of Medicine
University of British Columbia

bcarleton@popi.ubc.ca

Extra Slides

Project Deliverables

- 1. Understand clinical, genomic and psychosocial differences between patients for five priority rare disease drugs.
- Develop predictive tools to improve drug safety, effectiveness and quality of life for up to five priority rare disease drugs.
- 3. Create a mechanism and framework to assess, respond and solve complex problems associated with rare disease therapy and facilitate decision-making for patients, clinicians and health regulators/authorities.
- 4. Establish a databank of clinical, genomic and environmental data to catalyze global research of rare disease therapy

Benefits to End Users

Patients

 Individualized drug therapy delivered via predictive pharmacogenetic testing to enhance effectiveness and prevent harm

Clinicians

 Individualized drug benefit-risk assessment for their patients

Regulators

 Interdisciplinary framework to delineate Goal Posts for drug policy of rare disease drugs

Drug Plans

 Cost effective health spending that conveys the most benefit to patients

Benefits to Canada & World

- Reduce health care costs associated with rare disease drug-induced harm and non-response
- Exploit scientific understanding of "extraordinary responders" to enhance rare disease drug effectiveness
- Place Canada as a world leader in precision medicine for rare disease therapy
- International resource for researchers and stakeholders for rare disease drug biomarker discovery, validation and innovation

SLC28A3 Protective Against Anthracycline-Induced Cardiotoxicity

Project Team

Alex McKerrell
Martin Ester
Marylyn Ritchie
Sam Volchenbaum

Bruce Carleton
Colin Ross
Rod Rassekh
Catrina Loucks
Jonathan Rayment
Milan Patel
Lori Tucker
Jan Friedman
Katie Feldman
Lucie Pecheaux
Greg Guilcher